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Research continues to illustrate the important role of covariational and quantitative reasoning in the 
context of function and graphing. The same body of literature has emphasized that students and teachers 
often construct meanings for function and graphing that do not foreground these reasoning processes. In 
order to gain deeper insights into such meanings, we conducted clinical interviews with ten pre-service 
secondary teachers. In the present work, we illustrate the construct of shape thinking in relation to their 
graphing activity during the clinical interviews. We draw particular attention to the implications of shape 
thinking, including constraints generated by meanings rooted in such thinking, when confronted with non-
canonical situations. 
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Students’ function meanings remains a critical area of research in mathematics education (Oehrtman, 

Carlson, & Thompson, 2008), with a growing body of literature characterizing the role of covariational 
and quantitative reasoning in supporting students’ function concept (Carlson, Jacobs, Coe, Larsen, & Hsu, 
2002; Castillo-Garsow, 2012; Ellis, 2007; Moore, 2012; Thompson, 1994, 2011; Weber, 2012). For 
instance, Castillo-Garsow (2012) identified that the manner in which students’ conceive quantities and 
how they change in tandem has serious implications for their images of exponential growth. Likewise, 
Moore (2012) and Weber (2012) illustrated the importance of students’ attention to dynamic relationships 
between quantities in the context of trigonometric functions and two-variable functions, respectively.  

Although it is apparent that quantitative and covariational reasoning are important for students’ 
function concept, students’ mathematical experiences typically lack a fundamental focus on such 
reasoning (Oehrtman et al., 2008; Smith III & Thompson, 2008; Thompson, in press). In turn, these 
students construct function meanings devoid of imagery that involves varying quantities’ values. As cases 
in point, Thompson (1994), Goldenberg and colleagues (1992), and Weber (2012) documented that 
students have a tendency to conceive graphs as pictorial objects with various global properties that are not 
grounded in quantitative reasoning. Weber and Thompson termed such ways of thinking as shape 
thinking (Weber, 2012). 

We extend the shape thinking construct by exploring pre-service secondary mathematics teachers’ 
(PSTs’) activity during clinical interviews (Goldin, 2000) designed to offer insights into their meanings, 
particularly in the context of graphing. Based on several classroom events that suggested PSTs engage in 
shape thinking, we designed interview tasks such that shape thinkers might face perturbations in their 
meanings. By generating such situations, we characterize shape thinkers’ meanings, including constraints 
shape thinkers face when confronted with situations that are not supportive of shape thinking. Against the 
backdrop of our results, we discuss several implications of shape thinking and provide conjectures about 
the nature of students’ mathematical experiences that contribute to shape thinking. 

Theoretical Framing 
When one speaks of meanings, he or she is speaking of a pervasive, yet complex and often ill-defined 

term (Thompson, in press). Thus, it is necessary that we provide a brief description of our use of the term 
meaning. Drawing on the works of several individuals who concerned themselves with epistemology 
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(e.g., John Dewey, Ernst von Glasersfeld, and Jean Piaget), we consider meanings to be constructions 
unique to an individual that organize her experiences. As Thompson (in press) described, and drawing on 
Piaget’s description of understanding and meaning, the act of constructing meaning entails assimilation; 
to construct a meaning is to construct a scheme through repeated reasoning that enables one to organize 
her experiences. 

Due to the assimilatory nature of meanings, meanings influence how an individual makes sense of her 
future experiences. But, we caution that claiming meanings are assimilatory does not imply that meanings 
are static cognitive structures to be applied as is. Rather, meanings become more and more stable through 
an individual repeatedly reconstructing these meanings to make sense of her experiences (Thompson, in 
press). Meanings remain viable as long as they continue to enable an individual to organize her 
experiences in a way that is internally consistent. In the case that a particular meaning and experience 
leads to a perturbation, an accommodation or reorganization is then necessary to reconcile this 
perturbation.  

Graphing, Shape Thinking, and Quantitative Reasoning 
Stemming from a study exploring calculus students’ meanings for two-variable functions, Weber 

(2012) characterized shape thinking as, “an association the student makes with a function’s graph. For 
example, a student might associate a function’s graph with a particular shape with physical properties 
while another student might associate a function’s graph with a representation of quantities’ values” (p. 
17). In the present work, we use the phrase shape thinking to refer to this first aspect in which an 
individual’s meaning for a graph is inferred directly from the pictorial image and perceptual properties of 
the physical shape. In contrast to this form of reasoning, Weber deemed activity rooted in reasoning about 
covarying quantities as expert shape thinking. For clarity reasons and to avoid implying that shape think 
is necessarily developmental, we do not use the phrase shape thinking to refer to the act of conceiving a 
graph as an emergent representation of how two quantities vary in tandem. 

To provide contrasting examples of shape thinking and reasoning about covarying quantities, consider 
a student tasked with determining the formula for the graph in Figure 1. 

 

 
 

Figure 1: A Graph of y = 2x 

 
When providing a formula for the above graph, a shape thinker may first associate the graph with a 
formula of the form y = mx+b because she associates y = mx+b as defining a line. From there, she may 
conclude that m = -1 by reasoning that m represents the tilt of the line and the line is downward sloping at 
a 45 degree angle with the horizontal axis. Lastly, she concludes that b = 0 because the graph passes 
through the origin. In such a solution (e.g., y = -x), the students’ activity foregrounds previously defined 
properties that are tied to perceptual attributes of the shape (e.g., straightness and tilt). 

To provide a contrast to the above solution, another student may approach the problem by identifying 
that for each point captured by the curve, the y-value is two times as large as the x-value, leading the 
student to conclude that y = 2x. As another example, the student may determine that the curve captures 
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paired values such that for any change in x, the change in y is two times as large, and since the initial 
value (e.g., when x = 0) for y is 0, then y = 2x. Whereas a shape thinker focuses on more global and pre-
defined properties of the graph, essentially conceiving the graph “all at once” to determine the associated 
formula, these latter two solutions are generative in that the graph and its associated formula are 
conceived in terms of a dynamic relationship between quantities’ values; the latter students’ activities 
foreground a dynamic projection of points onto two axes to represent the quantities’ values.  

We agree with Weber’s (2012) stance that shape thinking is not entirely bad. Shape thinking can 
support an individual in quickly inferring different representations and properties of a relationship 
conveyed by a graph (e.g., a line in the Cartesian coordinate system conveys a relationship that is also 
represented by y = mx+b). But, a problem arises when shape thinking is in the absence of underlying 
meanings tied to inferences about quantities that vary in tandem (Goldenberg et al., 1992; Oehrtman et al., 
2008; Thompson, 1994; Weber, 2012).  

Methodology 
In order to better understand the nature and implications of shape thinking, we conducted semi-

structured clinical interviews (Goldin, 2000) with ten undergraduate PSTs at a large university in the 
southeastern United States. We chose the PSTs on a voluntary basis. Each interview lasted approximately 
90 minutes and all participants were given the same set of interview tasks. The PSTs were in their third 
undergraduate year, had already completed a minimum of two semesters of calculus plus two courses past 
the calculus sequence, and were currently enrolled in a functions and modeling course for PSTs. The 
course formed their first content course in the pre-service secondary mathematics teacher education 
program. We videotaped, transcribed, and then analyzed the interviews using conceptual analysis 
techniques (Steffe & Thompson, 2000) with a goal of characterizing the ways of thinking and meanings 
that supported their activity on the tasks.  

 

 
 

Figure 2: Debating Graphs 

 
The choice of PSTs for this investigation was influenced by a variety of factors. First, our focus on 

shape thinking arose out of a classroom event during a previous year in the functions and modeling 
course. This event consisted of a debate that ensued as a group of PSTs argued whether two graphs with 
different orientations represented the same relationship (Figure 2). For some, the orientation of the axes 
and visual features of the graphs were significant components of their thinking leading them to maintain 
that the two graphs did not represent the same relationship; to these PSTs, the two graphs were visually 
different and thus had to represent different relationships. Based on this event, we anticipated that a subset 
of the following semester’s PST cohort would rely upon shape thinking. Further, we chose to work with 
PSTs because their meanings matter in that they influence their teaching practices and their future 
students’ learning (Simon, 2006; Thompson, in press). We hoped to better understand their meanings and 
subsequently improve teacher preparation based upon our understandings of their meanings. For instance, 
better understanding shape thinkers’ meanings may provide insights into how to perturb their meanings 
and generate learning opportunities.  

Task Design Example 
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When characterizing meanings, it’s important that the researcher identify constraints in an 
individual’s ways of operating, as these constraints aid the researcher in building more viable models of 
students’ mathematics (Steffe & Thompson, 2000). In order to gain deeper insights into PSTs’ meanings, 
we designed numerous tasks such that a shape thinker might encounter such constraints. As shape 
thinking is rooted in reasoning about pictorial objects in and of themselves, meanings rooted in shape 
thinking require that the situation conform to conventions upon which such meanings were abstracted. 
Thus, in our design of the tasks, we designed several non-canonical situations in order to better 
understand shape thinking by identifying how deep-rooted shape thinking may be, characterizing 
constraints engendered by shape thinking, and uncovering other meanings that that the PSTs used to 
reconcile problematic situations.  

 

 
 

Figure 3: A Task to Investigate Shape Thinking 

 
To illustrate one such task, consider the two graphs in Figure 3. The task proceeds: (i) first a PST 

determines a graph of the inverse sine function when given a graph of the sine function; (ii) the PST is 
then asked to comment on a graph (Figure 3, left) and prompt claiming that a student produced such a 
graph as an answer to part (i); (iii) lastly, the PST is presented with and asked to comment on a modified 
version (Figure 3, right) of the previous graph and a student explanation. The narrative provided with (iii) 
is, “Well, because we are graphing the inverse of the sine function, we just think about x as the output and 
y as the input. When giving this explanation, the student added the following labels to their graph. 
(Student quote in italics).” 

We designed parts (ii)-(iii) to provide information about the PSTs’ meanings in the context of a 
situation that was non-canonical (e.g., considering axes as simultaneously representing input and output 
quantities of two functions). To a shape thinker, a function’s name and a particular pictorial object are 
inherently connected. For this reason, we conjectured that the solutions in parts (ii)-(iii) might be 
problematic to a shape thinker because each presents one curve as conveying two functions, y = sin(x) 
and x = arcsin(y) for -π/2 ≤ x ≤ π/2. 

Results 
As conjectured, the task described in the prior section revealed a number of instances that were 

suggestive of shape thinking. As a first example, consider Beth’s (names are pseudonyms) response when 
determining a graph of the inverse sine function for part (i) of the task. 

Beth: I should know this. Umm…I mean…(pauses for 30 seconds and writes y = sin(x)). 
Int: So how are you thinking about finding the inverse of that? Or the graph of the inverse? 
Beth: (Writes sin-1 y = x). So I mean, obviously it's just (writes sin-1 x = y) which doesn't help at all. 
(Laughs). Umm, but, I'm thinking that it's either going to be something like…actually I'm kind of 
embarrassed because I really should know this. 
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In this exchange, Beth first attempted to recall a shape from memory (e.g., “I should know this”), an 
approach that was not successful. Beth then symbolically manipulated y = sin(x) into sin-1 x = y, but 
obtaining this formula was not satisfying to Beth because her difficulty still lied within attempting to 
remember the shape of the graph (e.g., “I really should know this”). Following the above exchange, Beth 
made a few conjectures regarding the shape of the inverse sine graph, but as the discussion continued it 
became apparent that these conjectures were attempts to recall the graph from memory. Beth explained 
that she could not confidently determine an answer. We then progressed to parts (ii) and (iii) of the task to 
see how Beth would make sense of a posed solution to the problem.  

Int: So a student came to you with that graph (Figure 3, left) claiming that it was a graph of the 
inverse sine function. What would you say to that? Could that be true? 
Beth: Could that be true? Umm…(thinks silently for 15 seconds)…mmm, no. No. 
Int: Why are you thinking no? 
Beth: …I'm thinking this just kind of looks like…sine graph – like the plain sine graph. (Laughs). 
Which is going to be different. So, no… 
(Interviewer later gives Beth part (iii), Figure 3, right). 
Beth: I mean I guess what I'm like thinking about, like struggling with thinking is that like, like I don't 
know if, or if...an inverse function...like the graph of an inverse function, like, can't be the same as the 
original graph. Or can it? Like, I wouldn't think that it could. But maybe there's something I don't 
know. (Sighs). 

Beth’s responses and uncertainty in parts (ii) and (iii) are viable when viewed through the lens of shape 
thinking. Given this perspective, two different functions cannot be represented by the same graph because 
otherwise they would be the same function; a shape or curve has only one associated function name as a 
label. Thus, even though Beth was willing to admit there may have been something she did not know, she 
was unable to determine a way in which a student might conceive the graph as both the sine function and 
sine inverse function. 

While Beth’s perturbations appear to stem from her belief that different functions must have different 
shapes, another PST experienced conflict for apparently different reasons when responding to part (iii). 

Megan: Oh, Um, Um. We just can't do that (in response to Figure 3, right).  
Int: OK, say a little bit more.  
Megan: (Laughs). It's not, that's not, his definition is not necessarily wrong. But you can't just label it 
like that. Um, why? Why can't you do that? I don't know, I feel like he's missing the whole concept of 
a graph…Like, I know you can call whatever axis you know if you are doing time and weight or 
volume whatever…But not necessarily with the sine graph. Like the sine graph’s like a…it's a graph 
that everyone knows about…They are just missing the concept of graphing. 

Whereas we did not identify an instance in which Beth focused on input and output quantities, Megan 
identified that the posed graph involved denoting the axes in various ways relative to input and output 
quantities. Megan seemed willing to accept reversing the roles of the input and output for some quantities 
such as time and weight, but not in the case of the given graph. We believe that her comment, “it’s a 
graph everyone knows about” indicates that for the given graph, the input and output axes are fixed 
because that particular curve is designated as the sine function. Hence, changing the roles of the axes in 
the provided graph produces a conflict. 

We see that both Megan and Beth experienced unique perturbations when faced with a non-standard 
approach to graphing the inverse sine function. Yet, underlying both perturbations is a similar 
phenomenon that rests in their uniquely associating the given curve with the sine function. Due to the 
nature of this association, the given curve could not also be considered as the inverse sine function, even 
in the case that a PST (e.g., Megan) acknowledged the possibility of considering different axes for the 
input and output quantities. In each case, because the curve was “known” by a particular label, it was not 
possible to be given another label. 

Another form of shape thinking we observed was instances in which the PSTs’ reasoning was focused 
on the global properties of a curve in ways that were not attentive to emergent quantitative 
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relationships. For example, Beth was presented with the following hypothetical student’s graph of y = 3x 
(note the non-standard orientation of the x and y axes in Figure 4). 

 

 
 

Figure 4: A Hypothetical Student’s Non-standard Graph of y = 3x 

 
Int: How would you respond to the student or how might the student be thinking about this? 
Beth: Umm…like this (spinning paper 90 degrees counterclockwise). (Laughs). Like, because if you 
turn it this way then this (traces left to right along the x-axis which is now in the horizontal position) 
and this (traces top to bottom along the y-axis) and it would be still not right though (spinning paper 
back to original orientation). 
Int: And how would you respond to this student if they said, “Well here's how I'm thinking?” 
Beth: I guess…I mean the only way I can think of it is like this (spinning paper 90 degrees 
counterclockwise) and it's still wrong because this (a line which is now sloping downward left to 
right) is negative slope. So I would just, I would just explain to them, like the difference between the 
x- and y-axes and umm …show them like the difference between positive and negative slopes also. 
Because that's something that, like, when I was in middle school we, like, learned kind of like a trick 
to remember positive, negative, no slope, and zero (making hand motions to indicate each). Like 
where the slopes were. And it's stuck with me until now so it's important to know which direction 
they're going… 

Beth’s actions convey several instances of shape thinking. First, Beth’s insistence that the line has a 
negative slope after rotating the paper 90 degrees counterclockwise to orient the x-axis horizontally and 
her reference to remembering slope-curve orientation pairs provides evidence that her meanings for slope 
are connected to a particular shape (e.g., a line sloping downward left to right implies negative slope). 
Beth’s repeated moves to reorient the graph and her later rejection of the hypothetical student’s solution is 
also evidence of her reliance on shape thinking. Beth’s rotating of the graph was an attempt to achieve a 
conventional axes orientation, which would enable judging the solution against her image of the proper 
graph. Because Beth was unable to achieve an orientation compatible with her image of the appropriate 
graph, she maintained that the graph was “wrong” and described that she was not sure what the student 
did. 

Although shape thinking was a common way of reasoning for many of the PSTs throughout the 
interviews, a few of the participants utilized other ways of reasoning to make sense of the given 
situations. For instance, in contrast to Beth’s interpretations of the non-standard graph of y = 3x, another 
PST, Jacob, did not rely upon shape thinking. He instead made sense of the hypothetical student’s work 
by conceiving the graph in terms of a quantitative relationship. After taking a few moments to inspect the 
graph (Figure 4, axes unlabeled), Jacob decided to consider a few of the paired values. This led him to 
conclude that the student was “plugging in” values on the y-axis (e.g., consider x from the formula as 
along the typical y axis). After seeing the student’s work with the vertical axis being labeled as x, Jacob 
accepted the student’s work as correctly conveying the relationship y = 3x. Although this type of 
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quantitative reasoning was rarely observed during the interviews, we include it as a contrast to the other 
results in order to highlight the implications of relying upon shape thinking as one makes sense of graphs. 

Discussion and Concluding Remarks 
Over the course of the interviews, the PSTs predominantly engaged in shape thinking, which is 

unsurprising given the body of literature documenting meanings of this nature (e.g., Thompson, 1994, in 
press; Weber, 2012). What was unforeseen was how the PSTs’ meanings influenced their activity on 
problems that problematized shape thinking. The conflictions the PSTs faced during the interview tasks 
provide insights into the possible genesis of shape thinking. Instances of shape thinking became apparent 
when the given interview tasks broke common practices or conventions in school mathematics (e.g., axes 
orientation). As such, the PSTs’ struggles can be partly framed as a consequence of constructing 
meanings inherently tied to these conventions and encountering interview tasks that did not conform to 
the conventions from which shape thinking was abstracted. The PSTs’ propensity to engage in shape 
thinking highlights that such thinking had become an integral part of these PSTs mathematical meanings 
(e.g., meanings for the sine function, for inverse, and for slope). It follows that they likely had repeated 
experiences in which to (re)construct these meanings as viable. In other words, by repeatedly 
encountering situations that conformed to particular conventions, they abstracted meanings that were 
inherently tied to these conventions. For example, Beth’s slope meanings were tied to shapes reliant on a 
particular axes orientation that is pervasive in mathematics. 

Obviously mathematical conventions are critical supports to mathematical activity. But, a problem 
arises when meanings are tied to these conventions in ways that restrict one’s ability to reconcile 
situations that are internally consistent but do not follow such conventions. For instance, the graph in 
Figure 4 is a quantitatively correct representation. Yet, several PSTs were not able to provide a viable 
explanation for the student’s proposed graph because their meanings required that the graph be in a more 
conventional orientation. Such an outcome speaks to a possible drawback of mathematical conventions in 
the context of student learning; by repeatedly experiencing situations that conform to particular 
conventions, these conventions can become constraining aspects of student meaning. Then, as these 
students later become teachers, the conventions constrain how they may operate with their students and 
interpret student work. 

Glasersfeld (1995) stated, “Actions, concepts, and conceptual operations are viable if they fit the 
purposive or descriptive contexts in which we use them” (pg. 14). The prevalence and deep-rooted nature 
of shape thinking among the PSTs in the study implies that their meanings had consistently been 
“purposive and descriptive” during their previous mathematical experiences. By breaking from common 
graphing conventions, the tasks in this study created situations in which shape thinking did not provide a 
viable solution. This problematized the PSTs’ meanings, which would have generated teaching and 
learning moments in the classroom or another setting (e.g., a teaching experiment). Further research 
should explore how such tasks could be used to support students’ development of meanings that entail 
reasoning with quantitative relationships. Additionally, further research is necessary to characterize 
possible implications of particular conventions in K-12 mathematics in the context of student learning. 
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